Abstract
Recent work has discovered that large language models can develop broadly misaligned behaviors after being fine-tuned on narrowly harmful datasets, a phenomenon known as emergent misalignment (EM). However, the fundamental mechanisms enabling such harmful generalization across disparate domains remain poorly understood. In this work, we adopt a geometric perspective to study EM and demonstrate that it exhibits a fundamental cross-task linear structure in how harmful behavior is encoded across different datasets. Specifically, we find a strong convergence in EM parameters across tasks, with the fine-tuned weight updates showing relatively high cosine similarities, as well as shared lower-dimensional subspaces as measured by their principal angles and projection overlaps.